Scientists unravel low-light photosynthesis secrets

The scientists found that the chlorophylls are highly efficient at harvesting light energy. “We found that the orientation of the chlorophyll molecules make green bacteria extremely efficient at harvesting light,” said Donald Bryant, Ernest C. Pollard Professor of Biotechnology at Penn State and one of the team’s leaders. According to Bryant, green bacteria are a group of organisms that generally live in extremely low-light environments, such as in light-deprived regions of hot springs and at depths of 100 meters in the Black Sea. The bacteria contain structures called chlorosomes, which contain up to 250,000 chlorophylls. “The ability to capture light energy and rapidly deliver it to where it needs to go is essential to these bacteria, some of which see only a few photons of light per chlorophyll per day.”

Because they have been so difficult to study, the chlorosomes in green bacteria are the last class of light-harvesting complexes to be characterized structurally by scientists. Scientists typically characterize molecular structures using X-ray crystallography, a technique that determines the arrangement of atoms in a molecule and ultimately gives information that can be used to create a picture of the molecule; however, X-ray crystallography could not be used to characterize the chlorosomes in green bacteria because the technique only works for molecules that are uniform in size, shape, and structure. “Each chlorosome in a green bacterium has a unique organization,” said Bryant. “They are like little andouille sausages. When you take cross-sections of andouille sausages, you see different patterns of meat and fat; no two sausages are alike in size or content, although there is some structure inside, nevertheless. Chlorosomes in green bacteria are like andouille sausages, and the variability in their compositions had prevented scientists from using X-ray crystallography to characterize the internal structure.”

To get around this problem, the team used a combination of techniques to study the chlorosome. They used genetic techniques to create a mutant bacterium with a more regular internal structure, cryo-electron microscopy to identify the larger distance constraints for the chlorosome, solid-state nuclear magnetic resonance (NMR) spectroscopy to determine the structure of the chlorosome’s component chlorophyll molecules, and modeling to bring together all of the pieces and create a final picture of the chlorosome.

First, the team created a mutant bacterium in order to determine why the chlorophyll molecules in green bacteria became increasingly complex over evolutionary time. To create the mutant, they inactivated three genes that green bacteria acquired late in their evolution. The team suspected that the genes were responsible for improving the bacteria’s light-harvesting capabilities. “Essentially, we went backward in evolutionary time to an intermediate state in order to understand, in part, why green bacteria acquired these genes,” Bryant said. The team found that the more evolved, wild-type bacteria grow faster at all light intensities than the mutant form. “Indeed, the reason that chlorophylls became more complex was to increase light-harvesting efficiency,” said Bryant.