As Climate Changes, Boreal Forests to Shift North and Relinquish More Carbon Than Expected
May 5, 2013 — It’s difficult to imagine how a degree or two of warming will affect a location. Will it rain less? What will happen to the area’s vegetation?
——————————————————————————–
Share This:
7
See Also:
Plants & Animals
•Nature
•Endangered Animals
•Endangered Plants
Earth & Climate
•Climate
•Global Warming
•Forest
Reference
•Savanna
•Forest
•Taiga
•Tundra
New Berkeley Lab research offers a way to envision a warmer future. It maps how Earth’s myriad climates — and the ecosystems that depend on them — will move from one area to another as global temperatures rise.
The approach foresees big changes for one of the planet’s great carbon sponges. Boreal forests will likely shift north at a steady clip this century. Along the way, the vegetation will relinquish more trapped carbon than most current climate models predict.
The research is published online May 5 in the journal Nature Geoscience.
Boreal ecosystems encircle the planet’s high latitudes, covering swaths of Canada, Europe, and Russia in coniferous trees and wetlands. This vegetation stores vast amounts of carbon, keeping it out of the atmosphere where it can contribute to climate change.
Scientists use incredibly complex computer simulations called Earth system models to predict the interactions between climate change and ecosystems such as boreal forests. These models show that boreal habitat will expand poleward in the coming decades as regions to their north become warmer and wetter. This means that boreal ecosystems are expected to store even more carbon than they do today.
But the Berkeley Lab research tells a different story. The planet’s boreal forests won’t expand poleward. Instead, they’ll shift poleward. The difference lies in the prediction that as boreal ecosystems follow the warming climate northward, their southern boundaries will be overtaken by even warmer and drier climates better suited for grassland.
And that’s a key difference. Grassland stores a lot of carbon in its soil, but it accumulates at a much slower rate than is lost from diminishing forests.
“I found that the boreal ecosystems ringing the globe will be pushed north and replaced in their current location by what’s currently to their south. In some places, that will be forest, but in other places it will be grassland,” says Charles Koven, a scientist in Berkeley Lab’s Earth Sciences Division who conducted the research.
“Most Earth system models don’t predict this, which means they overestimate the amount of carbon that high-latitude vegetation will store in the future,” he adds.
Koven’s results come from a new way of tracking global warming’s impact on Earth’s mosaic of climates. The method is based on the premise that as temperatures rise, a location’s climate will be replaced by a similar but slightly warmer climate from a nearby area. The displaced climate will in turn … [read more]
Share this story on Facebook, Twitter, and Google: