Methane releases in the Arctic can lead to abrupt local warming that triggers further methane releases. The amount of methane stored in hydrates is huge and release of even a small part of the methane in hydrates could lead to runaway global warming.
Sunday, May 20, 2012
The potential impact of large abrupt release of methane in the Arctic
The image displayed on the left shows that methane’s global warming potential (GWP) is more than 130 times that of carbon dioxide over a period of ten years.
The image featured in a video and poster produced by Sam Carana1 (2012a).
IPCC2 figures were used to create the blue line. The red line is based on figures in a study by Shindell et al.3, which are higher as they include more effects. This study concludes that methane’s GWP would likely be further increased when including ecosystem responses.
Ecosystem responses can be particularly strong in the Arctic. As mentioned on the poster, further warming in the Arctic can cause accelerated ice loss and trigger further releases of methane from sediments under the sea.
Release of methane from sediments is particularly worrying in areas such as the East Siberian Arctic Shelf (ESAS), where the sea is rather shallow (image below), causing much of the methane to enter the atmosphere without being oxidized in the water.
Furthermore, low water temperatures and long sea currents in the Arctic Ocean are not very friendly toward bacteria that might otherwise break down methane in the water.
As said, release of methane from sediments is particularly worrying in the Arctic, where much of the water is rather shallow, as illustrated on the image below.
This is the case for areas such as the East Siberian Arctic Shelf (ESAS) that contain huge amounts of methane in the form of free gas in sediments and in hydrates.
As said, Shindell’s GWP figures do not include all indirect effects. Accelerated loss of sea ice and weakening of methane stores, due to the additional local warming of methane locally, can have a dramatic impact in case of large abrupt methane release in the Arctic.
The images below are from Flanner4 (2011) and shows that ice in the Arctic can cool areas by more than 30 Watts per square meter, and in summer by up to 70 Watts per square meter.
Apart from decline of snow and ice, additional methane releases could also dramatically increase accelerate local warming.
The image below, from Sam Carana8 (2011), illustrates the danger of the situation in the Arctic, where high levels of greenhouse gases, combined with the impact of aerosols such as soot, can cause high summer temperature peaks.
High temperatures in the Arctic will speed up loss of sea ice, resulting in even further warming that weakens stores of methane in the form of hydrates and free gas in sediments under the water, in a vicious cycle that threatens to lead to runaway global warming.
For more details on feedbacks, see extended version of this image and discussion at arctic-news.blogspot.com/2012/08/diagram-of-doom.html |
The IPCC2 rates methane’s Radiative Efficiency (in W m–2 ppb–1) at 3.7 x 10–4 and gives methane a perturbation lifetime of 12 years9. The IPCC9 defines perturbation time as the time it takes for a perturbation to be reduced to 37% of its initial amount. At the same time, the IPCC10 gives methane a global mean atmospheric lifetime of 8.4 years, which is the time it takes for half a perturbation to be broken down.
Methane’s lifetime will be extended as the burden rises, due to hydroxyl depletion. The IPCC11 estimates that this methane feedback effect amplifies the climate forcing of an addition of methane to the current atmosphere by lengthening the perturbation lifetime relative to the global atmospheric lifetime of methane by a factor of 1.4.
A NASA12 (2009) article discussing Shindell’s work mentions that increases in global methane emissions have caused a 26% decrease in hydroxyl.
Prather et al.13 (2012) derive a present-day atmospheric lifetime for methane (CH4) of 9.1 years.
In case of large abrupt releases of methane in the Arctic, much of the methane may persist there for decades and thus amplify local warming dramatically.
What would the impact be of abrupt release of 1Gt of methane in the Arctic, compared to the total global carbon dioxide emissions from fossil-fuel burning, cement manufacture, and gas flaring? The image below, from Sam Carana16 (2012b), gives a rather conservative impact, showing a rapid decline toward a small residual impact as carbon dioxide.
However, above graph does not include the indirect effect of triggering further releases. This is especially a threat in the Arctic, given the large presence of methane, the accelerated warming, the little oxidation that takes place in the Arctic atmosphere, and the time it will take for abruptly released methane to spread away from the Arctic.
The additional warming that this will cause in the Arctic will make the sea ice decline even more dramatically than is already the case now. The combined impact of sea ice loss and methane is huge, and threatens to trigger further releases of methane in the Arctic, with their joint impact accumulating as illustrated in the image below, also from Sam Carana16 (2012b).
Dramatic warming will first strike in the Arctic, but will soon spread, threatening to cause heatwaves and firestorms across North America and Siberia, adding additional soot and carbon dioxide in the atmosphere globally, as forests, peat bogs and tundras at higher latitudes burn, threatening to escalate in runaway global warming.
References
1. Sam Carana (2012a), Video and poster – methane in the Arctic
http://arctic-news.blogspot.com/2012/05/video-and-poster-methane-in-arctic.html
2. IPCC, Climate Change 2007: Working Group I: The Physical Science Basis, Table 2.14
http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html
http://www.sciencemag.org/content/326/5953/716.abstract
Presentation at Symposium, November 30, 2010
6. Natalia Shakhova et al. (2008)
EGU General Assembly 2008
7. Semiletov et al. (2012)
On carbon transport and fate in the East Siberian Arctic land–shelf–atmosphere system
http://iopscience.iop.org/1748-9326/7/1/015201
http://www.ipcc.ch/publications_and_data/ar4/wg1/en/faq-10-3.html
10. IPCC, TAR (2001) Working Group I: The Scientific Basis, 4.1.1 Sources of Greenhouse Gases
11. IPCC, TAR, 04 (2001), Atmospheric Chemistry and Greenhouse Gases, Executive Summary
12. NASA (2009), Interactions with Aerosols Boost Warming Potential of Some Gases
http://www.giss.nasa.gov/research/news/20091029/
13. Prather et al. (2012), Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry
http://www.agu.org/pubs/crossref/2012/2012GL051440.shtml
14. Taraborelli et al (2012), Hydroxyl radical buffered by isoprene oxidation over tropical forests
http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo1405.html
15. Euan G. Nisbet (2002), Have sudden large releases of methane from geological reservoirs occurred since the Last Glacial Maximum, and could such releases occur again?
http://rsta.royalsocietypublishing.org/content/360/1793/581.abstract
16. Sam Carana (2012b), How much time is there left to act?
http://arctic-news.blogspot.com/p/how-much-time-is-there-left-to-act.html